
1

WINTRE: AN ADVERSARY EMULATION TOOL

Functional Specification

Student: Martin Earls / C00227207
Supervisor: Richard Butler

2

1 Table of CONTENTS
2 Introduction .. 3

3 General Description ... 4

3.1 General UI Functions .. 4

3.2 Technique Functions ... 4

3.3 Custom Technique Functions .. 4

3.4 Campaign Functions .. 5

3.5 Report Functions .. 5

4 Project Scope ... 6

4.1 Goal .. 6

4.2 Deliverables ... 6

4.3 Risks ... 6

5 Target Market .. 6

5.1 Broad .. 6

5.2 Specific ... 6

6 Functional Requirements ... 7

6.1 Functional .. 7

6.2 Usability ... 8

6.3 Reliability ... 8

6.4 Performance .. 8

6.5 Supportability .. 8

7 Technique Functions.. 9

8 Application Users ... 11

9 Abstract Use Cases ... 12

9.1 Mock-up UI Design Functionality ... 13

10 Constraints... 14

10.1 Delivery Date .. 14

10.2 Platforms ... 14

10.3 Signatured tests ... 14

11 Project Plan ... 15

12 Metrics .. 16

13 Precedent ... 17

13.1 Similar Applications ... 17

3

2 INTRODUCTION
The application to be developed is a .NET C# desktop application for Windows operating systems.
Users will be able to review and execute security tests, or emulate malicious user behaviour as
defined in the MITRE ATT&CK framework. These techniques, coded as individual tests will help
generate indicators of compromise in the form of logs created from system events or notable alerts
from endpoint security products.

Techniques will be accessible from the GUI of the application and split into separate
tactics/categories defined in the ATT&CK framework. They will range from simple command-line
based tests to more complex ones utilising WinAPIs.

The user will be able to selectively choose which tests they want to run or save a group of tests as a
campaign. Tests can be executed one at a time or added to a queue system, the queue system will
simply allow the user to collect and gather a preferred list of tests beforehand and then execute them.

4

3 GENERAL DESCRIPTION
3.1 GENERAL UI FUNCTIONS

 Display different pages allowing access to functionality across the application.
 Allow user to move between pages with ease.
 Display and track technique queue across pages.
 Display watermark text and then clear this value when a user begins typing in a text box

element.
 Display tooltips for relevant UI elements.

3.2 TECHNIQUE FUNCTIONS
 Provide a mechanism for selecting which technique to run.
 Provide a mechanism to compile the relevant source code for the selected technique.
 Provide a mechanism to execute the newly compiled technique.
 Redirect standard output and standard error to the on-screen console log.
 Redirect standard output and standard error to a log file on disk.
 Provide a mechanism to manage a stack-based queue system from the techniques page.
 Allow a user to add a selected technique to the queue.
 Allow a user to delete the next technique on the queue.
 Provide a mechanism that enables a user to run tests both from the queue system and

from individually selected tests.
 Retrieve values from matching JSON file of the selected test.
 Display values from matching JSON file.
 Provide a mechanism to pass arguments for complex tests that cannot be ran without

arguments.
 Provide a mechanism to distinguish between command line tests and complex tests.
 Provide a mechanism for loading custom tests.
 Provide a mechanism to process JSON data.
 Delete all previously compiled payloads from disk.
 Keep track of any payloads that are detected by Windows Defender by checking if the

binary path matches threat protection history.

3.3 CUSTOM TECHNIQUE FUNCTIONS

 Provide a mechanism for the user to input data needed to create a test.
 Create fields for the user to input data containing:

o Technique name
o MITRE ATT&CK ID
o Elevated privileges
o Category/Tactic
o Selected source code template/launcher
o Commands
o Notes

 Create a relevant JSON file from the specified user input that will be used to load data
relevant to the technique.

 Create a relevant source code file based on the command input of the custom test.
 Provide a mechanism to escape a command input, to a string literal and perform

processing on the string so that the correct syntax is maintained when passed to the
source code file.

5

3.4 CAMPAIGN FUNCTIONS
 Provide a mechanism to select a group of tests.
 Allow the user to add these tests into a JSON file so that they’re easily referenceable.
 Provide a mechanism for loading and deleting tests based on saved campaigns.
 Allow the user to define metadata for the campaigns.

o Campaign name
o Focus of campaign
o Results efficiency percentage
o Results notes

 Allow the user to run multiple techniques in one session.
 Redirect standard output and standard error to the on-screen console log.
 Redirect standard output and standard error to a log file on disk.
 View previous campaigns and a brief description of their results.

3.5 REPORT FUNCTIONS

 Allow a user to enable or disable reporting functionality.
 When enabled, keep track of which tests are ran from either the techniques page or the

queue.
 Create a template summarising data of techniques that have been ran.

o Tactic
o Test ID
o Test name
o Detected
o Time and date of execution

 Create sections in the template where the tester can fill in their own details.
 Allow users to export, save or delete generated templates.
 Users must be able to preview their report that will be generated.

6

4 PROJECT SCOPE
4.1 GOAL

 The goal is to make a user friendly, GUI based C# application that supports running
small individual security tests, which are repeatable and easily configured.

 Develop a series of relevant and modern techniques based off of the MITRE ATT&CK
Framework.

 Integrate as many techniques as possible and have a more or less even spread of the
number of tests across categories.

4.2 DELIVERABLES
 Each tactic of the MITRE ATT&CK framework that is applicable to post exploitation

must be covered, in that it has relevant techniques available for testing that can be
applied to WINTRE’s purpose.

 Each technique must be reliable.
 Each technique must be relevant to the MITRE ATT&CK framework.
 Each technique must not cause permanent damage to the operating system or hardware.
 The tool must run on all modern Windows operating systems that have the .NET

framework installed.
 The tool must be easily portable between OS editions and function the same, e.g.

Windows Server, Education and Enterprise editions.

4.3 RISKS
There is a potential risk for misuse of this product by end users who may seek to cause damage
or attack systems using some of the tests in this project. In general, the majority of tests
developed for the project will not be employing heavy obfuscation or stealth techniques, nor will
there be any auto-exploitation functionality implemented.

Most tests are also designed to run locally on a single system, automatic command and control
functionality is not provided. Some tests that are particularly old and common e.g. process read
of LSASS to dump process memory, should always result in detection with any anti-virus
product. These deliberate measures should be sufficient in preventing damage by a malicious
user who may seek to run these tests.

5 TARGET MARKET
5.1 BROAD
The target market for this tool is applicable for any organisation that has a sizable dependence
on IT infrastructure. Broadly speaking this tool could be used in millions of various companies,
even ones where employees do not utilise computers in day to day operations. Organisations still
need some infrastructure for storing company, employee and customer data.

5.2 SPECIFIC
Penetration Tester: Pentesters may utilise the tool during purple team engagements to test the
effectiveness of a security operations centre, rather than writing and testing many techniques
manually they can efficiently test in a more results oriented manner, not worrying about the
validity of the test results. Purple Team engagements could also be conducted with the pentester
as the main tester while relaying information to a SOC. Engagements are usually very expensive
and take a great deal of preparation and planning to conduct. The tool reduces time spent in this
process meaning more time can be spent performing adversary emulation rather than preparing
for an engagement.

7

Security Operations Centres: SOCs looking to carry out fast, efficient adversary simulation
testing in line with the MITRE ATT&CK framework would highly benefit from such a tool.
WINTRE would be exponentially more cost effective due to the high cost of hiring a
penetration tester/red team to perform a purple team engagement. Time is also saved by relying
on in house setup and installation rather than working with an external company every
simulation. SOCs are usually in house and would have a say in how their security is spent,
typically however this only applies to medium to large sized companies that can afford a team of
analysts that make up the SOC.

6 FUNCTIONAL REQUIREMENTS
6.1 FUNCTIONAL

Function Description Criticality Obstacles Dependencies
1

Run test
Simulate
technique

HIGH
Local binary
compilation

GetTests

2
Complex test

Check if a test
is complex

HIGH -

3 Add test HIGH JSON -
4

Get tests
Load all tests

from file system
on startup

HIGH - -

5

Escape command
Convert

command to
string literal

HIGH

Filtering
commands
with quotes
and symbols

AddTest

6 Create campaign Define a new
campaign

MEDIUM - RunTest

7

Load campaign

Search, store
campaign
details for

display

MEDIUM - CreateCampaign

8
Review campaign

View details of
a previous
campaign

MEDIUM - LoadCampaign

9
Add to queue

Add a test to
the queue

MEDIUM - -

10
Remove from queue

Remove a test
from the test

queue
MEDIUM - AddToQueue

11
Add note

Add notes
during

campaign
LOW - -

12
Enable reporting

Start generating
template

LOW - -

13 Export report Export a report
from preview

LOW - Enable
Reporting

14
Delete report

Delete an
existing report

in progress
LOW - Enable

Reporting

8

6.2 USABILITY
 The application must be convenient to use.
 The user interface must be well designed, responsive and easy to navigate.
 The interface must have built in tool tips and watermarks for textbox values, in order to

further enhance legibility and ease of use.
 Creating custom techniques must be accessible for simple tests.
 Report generation must be of a quality compatible with a manual report, such that the

user may rely on both dynamic report generation and their own post editing.
6.3 RELIABILITY

 The application must not crash or create vulnerabilities on the system.
 Malicious techniques should be able to undo any potential system changes made, e.g.

decrypt user files in ransomware testing.
 The application must have the ability to clear any malicious payloads compiled on the

system.
 The application must maintain verbose logs with the capability to present these to the

user or store them for external analysis.
 Logs generated by the application must record all relevant steps and actions undergone

when executing techniques.
 Accurate timestamps of potential detections must be maintained for post engagement

correlation.
6.4 PERFORMANCE

 The application must not hog system resources.
 The application must use minimal resources to accomplish all tasks.
 The application must not be prone to memory leaks.

6.5 SUPPORTABILITY
 The accompanying usage manual must cover the necessary technical aspects while also

presenting usage steps at a high level for ease of use.
 Installation of the tool must be simplified in all possible areas with minimal user

interaction required.
 The application must support all applicable modern Windows operating systems without

error.
 The application must support logging detections that come as a result of Windows

Defender.
 If the .NET framework is not present on the system, an installation script must detect

this and inform the user or download and perform the installation for them.

9

7 TECHNIQUE FUNCTIONS

Main Techniques:

1. Code Execution
a. Execute a disguised PE - run an executable file that may have a masked extension

using whitespace. Example: “testfile.pdf .exe”. A
simple test to see if anti-virus picks up on files using whitespace in names to hide
the real extension.

b. Rundll32 - run an arbitrary payload, typically from a DLL. Attackers can use this
instead of directly running executables.

c. JavaScript - run shell commands from a JavaScript context.
2. Persistence

a. Create local backdoor administrator - creating a local admin account on the
machine.

b. Create hidden local backdoor administrator - creating a local admin account on
the machine that is hidden using string manipulation. Example:
“net user $ Hidden! /add /active:yes”.

c. Extension hijacking - make it so that when a user opens a certain type of file (e.g.
text files), they actually launch a script that will execute a pre-defined payload in
the script.

3. Privilege Escalation
a. Get unquoted service paths - enumerate all local service paths, filter them for

missing quotes which can be used to change the intended binary path, allowing
an attacker to execute their own PE in place of the original.

b. Search for sensitive strings (e.g. “password”) - simply get a list of all files, search
for matching strings that may involve passwords.

c. Search for credential related files - get a list of all files and search for files that
may store credentials. Even if these files don’t exist, it could be a good indicator
of compromise to check for if someone is noticed to be looking for these files.

4. Defence Evasion
a. Crypter - encrypt an executable, bypass Windows Defender static analysis and

(hopefully) runtime analysis.
b. Create Windows Defender folder exclusions - add folder exclusions from which

files could be executed.
c. Turn off Windows Defender - temporarily disable runtime scanning and other

protections if possible.
d. Basic Powershell/Windows command line obfuscation - execute standard shell

commands but with obfuscation, such as string concatenation.
5. Credential Theft

a. Keylogger - log and store user keystrokes for a specified time interval.
b. Decrypt vault credentials - decrypt windows vault credentials.
c. Check for auto logon credentials - check the registry for these credentials, even if

they don’t exist this could be indicator of compromise when this anomalous
behaviour is discovered.

d. Dump LSASS process memory - create a process dump of LSASS to extract local
NTLM hashes.

e. Dump registry hives to extract NTLM hashes (SAM / SYSTEM)
f. Create a dump of SECURITY hive to extract MS Cache V2 credentials/domain

account credentials.

10

g. Credential prompt - use PowerShell to prompt a user into entering their
password via GUI. Note: tester simply prompts themselves and enters any value
to fulfil the test.

h. Decrypt Wi-Fi credentials - credentials related to access points may be stored on
a system and can be decrypted in the context of the user’s session.

i. Custom network provider - add a custom credential manager that simply saves
the user’s password in plaintext.

6. Discovery
a. Local account discovery - list local user accounts.
b. Local permissions discovery - enumerate local user permissions.
c. Local process discovery - enumerate processes and installed software.
d. Get system information - retrieve system / OS related information.
e. Internal site discovery - check the registry for a trusted site list which may expose

intranet sites.
f. File and directory discovery - gather a list of files on the system, determine

programs installed and potential attack surface.
7. Data Exfiltration

a. Archive files for exfiltration over the internet - e.g. extracting any retrieved
credential files, send to remote server for analysis.

b. Encode files for exfiltration over the internet.
c. Encrypt files for exfiltration over the internet.
d. Use steganography for exfiltration over the internet.

Discretionary Techniques:

1. Privilege Escalation
a. Spawn SYSTEM Shell (PsExec) - Copy a service executable to a local file share,

use this service executable to launch an arbitrary service that could spawn a local
SYSTEM shell with maximum privileges.

b. Service binaries - Get a list of service binaries and determine if a user has
permissions to append or modify data.

2. Lateral Movement
a. PsExec Lateral Movement - This lateral movement would only take place

between the 2 designated machines. Copies a service executable to a remote file
share, executes it using named pipes to create an interactive SMB shell, equivalent
to a reverse shell connection. Attacker in this case authenticates with a username
and password of a local administrator.

b. Pass-The-Hash (PsExec) - Use NTLM hashes as opposed to a password for
configuring a remote service on a file share to get an interactive SMB shell.

3. Impact
a. Ransomware - A controlled ransomware program, which would encrypt all files

in a user’s directory and then decrypt them to simulate a ransomware attack.
4. Command and Control

a. Execute C# (PS) reverse shell back to Kali - Create a reverse shell to an external
server listening for a callback via TCP Socket WinAPIs.

b. Execute PowerShell reverse shell back to Kali - Create a reverse shell to an
external server listening for a callback via PowerShell.

c. Downloaders - Use built in Windows binaries to download external payloads as
referenced from the “Living off the Land Binaries (and Scripts)” project. E.g.
CertUtil.exe.

d. Powershell download utility, utilising WinAPIs through .NET framework.

11

8 APPLICATION USERS
Systems Administrator/Tester - The primary user for this application will be a system
admin/tester. This is based on the fact that the majority of organisations do not perform
adversary emulation due to the high cost and expertise required to do so, having a tool that can
achieve this gives much more power to smaller organisations and systems administrator teams
that do not have a dedicated team of security analysts to rely upon. This user is the most
common, expected general application user.

The system admin serves as a general user/tester, that may also be fulfilling a security role and
seeks to perform adversary emulation.

12

9 ABSTRACT USE CASES
The following use cases are based on the three most common scenarios of a user interacting with
the application, running tests, adding a custom test or generating a report based on tests that are
being run.

Running a series of techniques:
Primary Actor:

 Tester/Sys admin
Preconditions:

 None
Success Guarantee:

 The user can select techniques to run.
Main Success Scenario:

 User starts the application.
 User selects the techniques page.
 User selects their preferred category.
 User can then select tests and review the test information.
 User can add the test to the queue or simply run the test.
 User can review the output of the test in the log output or run it from the queue on the

sidebar where the output will also be send to the logs.

Creating a custom technique:
Primary Actor:

 Tester/Sys admin
Preconditions:

 User has tested their custom technique’s syntax is correct and functioning.
Success Guarantee:

 The user can create a custom test based on a command of their choosing to fulfil a
specific MITRE technique.

Main Success Scenario:
 User enters a technique name.
 User enters a related MITRE ATT&CK ID.
 User selects whether their technique runs with elevated privileges or not.
 User select the relevant category/tactic of their technique.
 User chooses a template, either cmd.exe or powershell.exe to launch their technique.
 User enters their command(s) to execute their technique.
 User enters notes related to the technique.

Generating a report:
Primary Actor:

 Tester/Sys admin
Preconditions:

 User has started the application and has selected tests to run.
Success Guarantee:

 The user is able to successfully enable report generation and the report is dynamically
generated as tests are ran. This means a table containing the tests and its details are
generated along with additional fields relevant to the testing (such as time / date) for the
tester to fill in.

13

Main Success Scenario:
 The user starts the application.
 The user runs some tests or adds some tests to a queue.
 The user enables the report generation feature.
 The user runs several tests.
 The user can then view the results generated from tests and manually mark off if a

technique was detected.

9.1 MOCK-UP UI DESIGN FUNCTIONALITY

Mock-up for Techniques page, where a user can select and run tests.

Mock-up for Custom page, where a user can create custom tests.

14

10 CONSTRAINTS
10.1 DELIVERY DATE
The delivery date for the finalised product is April 2021, this may be a short time frame
depending on the number of techniques to be implemented. To balance out the deliverables
proposed techniques for development are to be split into mandatory and discretionary
categories. Mandatory ones will take precedence as well as ensuring that each category has at
least 3 techniques to choose from. In an ideal situation where all discretionary functionality is
completed, each category is to have 5+ techniques.

10.2 PLATFORMS
The tool will be developed using the .NET framework which is compatible with most modern
Windows operation systems. Testing will take place on Windows Education.

Target framework:

 .NET Framework 4.7.2
 64-bit architecture, product may be compiled to also run on 32-bit subsystems depending

on feasibility of the developed techniques

10.3 SIGNATURED TESTS
Some techniques developed may have to be updated or removed during testing, despite having
previously functioned with no issues. This may happen if the technique in question is signatured
and Windows Defender starts detecting it unexpectantly. This may happen to any technique
eventually if the test begins to be considered malicious when anti-virus signatures are updated.

It also depends on the validity of testing a certain technique if you know definitively that
technique will generate a notable alert. To prevent tests from being uploaded and signatured,
Automatic Sample Submission and Cloud Based Protection features of Windows Defender will
be disabled during development.

15

11 PROJECT PLAN

Sprint Plan Due Date Deliverable
1

Custom Tests 30/11/2020

Finish custom tests
functionality, test out more

commands to be added, finish
the PowerShell command

template.
2

Techniques/Standard Tests 11/12/2020
Complete standard test

functionality, load test details
from relevant JSON files.

3

Complex Tests 23/12/2020

Technically “standard” tests
but ones that will require

additional arguments, update
UI and simulation mechanism
to reflect this, e.g. arguments

for reverse shell.
4

Further develop techniques 7/1/2021
Further expand on techniques

in various categories.
5

Further develop techniques 21/1/2021
Further expand on techniques

in various categories.
6

Report Functionality 7/2/2021

Develop report generation and
export functionality, preferably

to word documents as a
template.

7
User Interface 21/2/2021

Enhance UI aspects, add
graphics and icons.

8

Performance Testing 7/3/2021

Test performance of the
application, benchmark the

application on various
Windows systems and seek to

improve performance if
possible.

9

Unit testing 21/3/2021

Create unit tests for specific
parts of the application to test
for redundancy, e.g. an invalid

custom test etc.
10

Security testing 28/3/2021
Test the application for any

potential security issues,
potentially encrypt logs?

11 Reserved 19/4/2021 Complete any outstanding
work by project due date.

16

12 METRICS

Criteria Description

Usability
The product must be easy to use and conform to usability

standards. The product is easy to setup and the user can quickly
display and choose tests to execute.

Platform
The target platforms are modern Windows desktop operation

systems, the application should also be compatible with Windows
Server and similar OS.

Security
The application must be secure and not create any unintended
vulnerabilities or alter a system’s configuration beyond repair.

Efficiency

The application must be able to produce quantifiable results, i.e. an
efficiency rating of the existing security controls that could be
recorded in the report generation manually during testing. This

efficiency rating serves as the central benchmark to how an
organisation will improve testing over time based on the

techniques that are being ran.

Supportability

Sufficient documentation is provided to the user in the form of a
user manual that goes into detail on techniques. This detail is also
provided in the application itself where possible. Complex tests

that require additional user interaction or setup are also accounted
for in supplementary documentation.

17

13 PRECEDENT
The major precedent for this project was during my internship. My job role as a security analyst
heavily focussed on creating and facilitating the testing of the MITRE ATT&CK framework
against existing endpoint security controls. During this time, I was working with several Anti-
Virus and Endpoint Detection and Response products, often with the end goal of analysing
which product was most viable for the protection of company assets. This meant the efficiency
of each product had to be tested regularly and required many iterations of testing to produce a
comprehensive report with repeatable, relevant techniques that were based on the MITRE
framework.

I was testing many techniques meaning there was a heavy time investment spent researching and
programming the techniques rather than actually testing. As well as that, the tests would have to
be manually chosen beforehand meaning the tester had to note down exactly which scripts were
being ran at what times, and note down when they were executed. This was necessary
information for the security operations centre to be able to correlate their log data and perform
threat hunting or analysis of the specific tests being ran.

13.1 SIMILAR APPLICATIONS
Scythe is the primary similar application this product is based on. Scythe is a closed source
adversary emulation platform. During my work placement I worked with a penetration tester
using Scythe to conduct a purple team engagement. I discovered some of the disadvantages of a
server-client component when using it, as Scythe incentivises the user to run many techniques
together in a single executable, that executable is also compiled on the server.

There were two major disadvantages to this, firstly it made the security operation centre’s job of
analysing the results of the tests more difficult given that they were all being executed within
seconds of each other. This also meant each test had to be configured, compiled and then
downloaded manually on to the target endpoint if they were to be separated.

Secondly, as the tests were compiled externally this required manual patching of each binary as
existing security controls would block execution of any binaries not compiled by the local user or
ones that did not have a valid certificate to prove their origin. This was bypassed using signature
spoofing but by compiling the executables locally with WINTRE, we avoid this unnecessary
complication.

